
Array Management System { Fortran Version (AMSF)

Version 2.0

by

Tzong{Shuoh Yangy

Department of Civil Engineering

University of California at Berkeley

Revised: Deember, 1990

The version 1.2 of AMSF was published in

Computers & Strutures Vol. 33, No. 6, pp. 1507-1527, 1989.

Abstrat

The Array Management System { Fortran version (AMSF) is an integrated set of array management tools

designed to inrease the produtivity of tehnial programmers engaged in intensive matrix omputational

appliations. AMSF is omposed of a set of easy-to-use in-ore and out-of-ore data management subroutines

written in FORTRAN 77. The in-ore array management subroutines of AMSF allows dynami storage

alloation to be aomplished with integer, real, and omplex data with a minimum of programming e�ort.

The out-of-ore array management subroutines of AMSF support simple operations to allow array transfer

between in-ore and out-of-ore systems and allow di�erent programs to aess the same data. The out-

of-ore data management provides for diret aess database �le to speed up the input/output operations.

Multiple databases are allowed to be aessed by a program, this provides an easy way to share data and

restart. This integrated database environment is suitable to be the kernel of a software projet with several

programmers and data ommuniations among them.

y Graduate student. Can be reahed at tsyang�e.berkeley.edu

1

Introdution

Management of information has beome an extremely essential task in omputer-aided design and en-

gineering analysis system. Sine the volume of data needed to de�ne and solve is giganti even for the

medium-sized problems, it is generally more onvenient to onstrut a database on auxiliary mass storage

devies for eah problem. Great progress has been made in this area sine the early 1980s[1-4℄. Due to the

fat that most engineering data are in array form (list, table, vetor, and matrix), whih is quite di�erent

ompared to business disrete data, tehniques of in-ore and out-of-ore array managements must be inor-

porated in eÆient odes suh that arrays an be stored in the disk and restored bak to RAM dynamially

and quikly. Commerially, the available database management systems (DBMS) are mostly designed for

business usage only. Using suh business DBMS to handle engineering data seems tedious and ineÆient in

operations.

AMSF is devised as a tool for programmers who design omputer-aided design programs, and heavily

matrix operational odes. These inlude analog iruit simulator, statistial analysis, dense or sparse equa-

tions solving, simulation, and in partiularly, the �nite element program development. Features of AMSF

are the following:

a. EÆient memory alloation tehnique are provided for array delaration. Arrays of data may be integer,

real, or omplex. Storage mode of matrix an be general, symmetri, or diagonal.

b. Arrays in AMSF are referened by the symboli name, not by the address; a friendlier method enables

the user to tailor and maintain omputer odes easily.

. Arrays in main memory are losely related to an out-of-ore mass storage disk. A spei� array an be

saved in database and retrieved later via diret disk aess. The same array an have several di�erent

versions of bakup in the storage disk.

d. One an array is removed from main memory, storage previously oupied by the array is released and

an be used by other arrays. Fragmentations due to memory dealloation are automatially paked, so

that a maximum ontiguous memory spae an be provided for later use.

e. Several databases an be used simultaneously. Arrays an be opied to (or from) other databases, suh

that data sharing and program restart are possible.

f. Matrix operation modules, like EISPACK[5℄, IMSL[6℄, LINPACK[7℄, and SSP[8℄, an be easily adapted

to AMSF.

Initialization of AMSF Databases

Dynami storage alloation is now a standard feature in modern omputer languages, suh as C and

Pasal, but FORTRAN does not allow dynami memory alloation or hanging an array size diretly during

program exeution. One of the funtions of AMSF is to ontrol and maintain the pseudo{dynami memory

alloation and dealloation proesses of various sizes of arrays. It is neessary for the appliation programmer

to reserve a large ontiguous memory spae via delaring a large array for use by AMSF as a memory bank.

All arrays are de�ned as one-dimensional arrays, and stored sequentially in one overall array alled IA.

The total spae oupied by all in-ore arrays is limited only by the size of the large array de�ned in the

main program,

COMMON MAVAIL, IA(30000)

MAVAIL = 30000

where MAVAIL (memory available) will be the atual size of the IA array.

Before AMSF takes over the ontrol of the array management task, a all to subroutine DBOPEN must

be issued, suh that a disk database �le is reated for use as both in-ore and out-of-ore array operational

environment. At the end of the appliation program, a all to subroutine DBCLOS will terminate AMSF

and shutdown the database �le.

The two subroutines whih are used to open/lose databases (in disk �les) are alled by the following

statements:

CALL DBOPEN(Nd,'DBname',Status)

2

CALL DBCLOS(Nd,Status)

The subroutine DBOPEN opens a database 'DBname' and assigns Nd as a database number. The

database name 'DBname' is also used as the �le name in the omputer system; thus the length of 'DBname'

is dependent on your omputer site. There is a onditional string onstant alled Status. You an speify

Status = 'old' to reopen an old database, or speify Status = 'new' to initialize a new one. If you speify

Status = 'unknown' and the database already exits, then DBOPEN opens the old database; otherwise a

new database is reated and opened. Another funtion of DBOPEN is to initialize AMSF, i.e., DBOPEN

with Nd=1 should be alled before any AMSF subroutine an be used. The database with Nd=1 is alled

the master database. Several databases an be opened and used simultaneously by using Nd = 1,2,3,... to

distinguish between them. All databases exept Nd=1 are alled seondary databases.

The subroutine DBCLOS loses the database previously opened and stores the diretory �rmly together

with its array data. If Status = 'delete', the database �le will be deleted after losing. You an speify Status

= 'keep' if the database are going to be reused again. It is important to note that, if several databases are

used, the master database must be the �nal one to be losed. Closing the master database implies that all

unlosed seondary databases will be losed together.

A program fragment listed below is a sample to show the arrangement used to initialize and terminate

AMSF in the appliation ode:

PROGRAMSAMPLE

C... SETUPMEMORYBANK

COMMONMAVAIL, IA(30000)

MAVAIL=30000

C... OPENMASTERDATABASE

CALLDBOPEN(1,'DBFILE','NEW')

.

.

. PLACE YOUR APPLICATION CODES HERE

.

.

C... CLOSEMASTERANDALLUNCLOSEDSECONDARYDATABASES

CALLDBCLOS(1,'KEEP')

STOP'DONE'

END

In the ase where a fatal error ours in your appliation program, the integrity of AMSF databases is

ensured by a all to DBCLOS(1,'keep'). This is always neessary before the appliation program is eased.

3

Funtion Desription of In-ore Array Management

The series of subroutines whih are presented in this setion are designed to allow storage to be easily

and dynamially alloated and managed during the exeution of the omputer ode. It also allows data to

be aessed from any subroutine without passing the array names through arguments to subroutines.

Eah subroutine whih ommuniates with the AMSF requires a statement of the following form:

COMMON MAVAIL, IA(1)

All arrays whih are ontained in the AMSF database system are designated by a four-harater ASCII

name whih is seleted by the programmer.

Five subroutines whih are used to alloate and manage storage in IA array are alled by the following

statements:

CALL DEFINE(Nd,'Name',NvMax,Nt,Nr,N,Ms,Lo)

CALL LOCATE(Nd,'Name',Nt,Nr,N,Ms,Lo)

CALL DELETE(Nd,'Name')

CALL DELALL(Nd)

CALL RENAME(Nd,'OldName','NewName')

where Nd is the database number, and 'Name' is the four-harater array name and is assigned by the user.

The subroutine DEFINE reserves storage for array of Nt data type, where Nt=0 for integer, Nt=1 for

real, Nt=2 for Complex. The NvMax is the number of versions of the array to be stored in the disk database

�le. If NvMax=0, only in-ore array is de�ned. If NvMax > 0, then besides de�ning in-ore array, the

out-of-ore disk spaes are reserved for it and lear to zero values. Eah time an array has been de�ned, in

addition to alloate spae in IA array, a diretory will be reated ontaining the array's attributes. AMSF

uses the diretories to manage all in-ore arrays and out-of-ore disk databases.

Ms = 0;

0

B

�

a

11

a

12

a

13

a

14

a

21

a

22

a

23

a

24

a

31

a

32

a

33

a

34

a

41

a

42

a

43

a

44

1

C

A

�!

0

B

�

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1

C

A

Ms = 1;

0

B

�

a

11

Sym:

a

21

a

22

a

31

a

32

a

33

a

41

a

42

a

43

a

44

1

C

A

�!

0

B

�

1

2 3

4 5 6

7 8 9 10

1

C

A

Ms = 2;

0

B

�

a

11

a

22

a

33

a

44

1

C

A

�!

0

B

�

1

2

3

4

1

C

A

Figure 1. Storage mode (General, Symmetri, and Diagonal)

The array is spei�ed to have Nr rows and N olumns. The value of Ms indiates the storage mode of

the matrix; Ms=0 for general matrix, Ms=1 for symmetri matrix, and Ms=2 for diagonal matrix. Matrix

storage modes are ompatible with several mathematial libraries, like EISPACK, IMSL, LINPACK, and

SSP. Figure 1 illustrates eah storage mode. This apaity has been implemented using the vetor storage

approah. General matries of order Nr by N require Nr �N memory ells. Symmetri matries of order

4

N may be stored in a vetor of only N � (N +1)=2 storage ells. Diagonal matries of order N may be stored

in a vetor with N storage loations. If the free memory suÆes for the request in de�ning a new array,

the value of Lo is returned whih indiates the loation of its �rst term in IA array. If there is not enough

storage for the array, Lo is returned with value zero.

The subroutine LOCATE returns the address Lo, data type Nt, the number of rows Nr, and the number

of olumns N of array 'Name' whih have been de�ned. The value Lo will be zero if the array has not

previously been de�ned or not in the main memory. If the array already exits in disk database and not in

the main memory, then a value of Lo= �NvMax is returned. The GET subroutine is used to retrieve it

(explained later).

The subroutine DELETE removes the array 'Name' from the in-ore storage area, but keeps all NvMax

versions in an out-of-ore disk �le, thus releasing the storage for use by other data. It should be noted that

new arrays are always added at the end of the IA array. Therefore, if arrays are deleted the other arrays

will be reloated in storage and any new array will be added at the end of the IA array.

The subroutine DELALL removes all arrays from the in-ore storage area, and then releases all the

storage spae for use by other data. Oasionally the array name may need to be hanged, the subroutine

RENAME an be used to do this.

There are many ases when one needs data from other databases. AMSF supports a subroutine to help

you transfer the data in the following alling form,

CALL COPY (Nd1,'Name1',Nd2,'Name2')

Subroutine COPY dupliates in-ore array 'Name1' in database Nd1 to array 'Name2' of database Nd2.

Both of them should be in-ore arrays providing that the data type and array dimension of both arrays are

onsistent, otherwise an error message will be issued.

Funtion Desription of Out-of-Core Array Management

The subroutines presented in this setion are designed to perform the out-of-ore array management

and data transfer between di�erent databases. Nine subroutines and a funtion whih are used to save and

retrieve arrays in database are alled by the following statements:

CALL SAVE (Nd,'Name',Nv)

CALL GET (Nd,'Name',Nv,Lo)

CALL STORE (Nd,'Name',Nv,Narray)

CALL FETCH (Nd,'Name',Nv,Narray)

IP = LOOK(Nd,'Name')

CALL QSTORE (Ip,Nv,Narray)

CALL QFETCH (Ip,Nv,Narray)

CALL REMOVE (Nd,'Name')

CALL MOVE (Nd1,'Name1',Nd2,'Name2')

CALL DBCOPY (Nd1,Nd2)

The subroutine SAVE writes in-ore array 'Name' into disk database Nd. Nv spei�es the number of

the version to be written in the database �le. Nv must be a positive nonzero integer, whih is less than or

equal to NvMax of the array. If the Nv version of the array in disk has previously been written, the later

SAVE will replae the previous one. An array may have only one version or several versions depends on the

user's need. For example, in a �nite element analysis program you may assign element sti�ness matrix to a

name alled 'ESTF', use Nv as element number, and set NvMax to the number of elements.

The subroutine GET retrieves array 'Name', version Nv, from the disk database and restores it into

main memory. The value Lo is returned after GET, whih indiates the �rst element loation of array

'Name' in IA array. If the array already exists in main memory, the array just read from the disk will

supersede it.

5

The funtions of GET and SAVE are just like the diret aess READ and WRITE statements in

FORTRAN 77. By analogy, the reord number in diret aess is funtionally the same as the version

number.

To illustrate the high speed diret aess mehanism of AMSF, the following sample program writes 100

versions of a real array in reverse order and reads bak in usual order.

PROGRAMTEST

IMPLICITINTEGER*4(I-N)

C

C... WRITEARRAYSINREVERSEORDER,THENREADBACKINUSUALORDER

C

LOGICAL ERR

COMMON MAVAIL, IA(30000)

MAVAIL=30000

WRITE(*,*) 'CREATEDATBASE...'

CALLDBOPEN(1,'DBTEST','NEW')

C... DEFINEVCTR,A500ELEMENTSREALVECTORWITH100VERSIONS

N =500

NVMAX=100

CALLDEFINE(1,'VCTR',NVMAX,1,N,1,0,LOC)

C... GENERATEVCTRANDSAVEITINDISK

IBASE=N*(NVMAX-1)

DO10NV=NVMAX,1,-1

WRITE(*,*) 'GENERATEANDSAVEVERSION',NV

CALLSETVAL(IA(LOC),N,IBASE)

CALLSAVE(1,'VCTR',NV)

IBASE=IBASE- N

10 CONTINUE

C... READVCTRBACKTORAMANDCHECKFORCORRECTNESS

IBASE=0

DO20NV=1,NVMAX

WRITE(*,*) 'READANDCHECKVERSION',NV

CALLGET(1,'VCTR',NV,LOC)

CALLCHECK(IA(LOC),N,IBASE,ERR)

IF(ERR)THEN

WRITE(*,30)

ELSE

WRITE(*,40)

ENDIF

IBASE=IBASE+N

20 CONTINUE

CALLDBCLOS(1,'DELETE')

STOP'DONE.'

30 FORMAT(1X,'... ERROROCCURS')

40 FORMAT(1X,'... NOERROR')

END

SUBROUTINESETVAL(VCTR,N,IBASE)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

C... SETVCTRVALUES

DIMENSION VCTR(N)

DO10I=1,N

10 VCTR(I)=IBASE+I

RETURN

END

SUBROUTINECHECK(VCTR,N,IBASE,ERR)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

C... CHECKVCTRVALUES

DIMENSION VCTR(N)

LOGICAL ERR

ERR=.FALSE.

6

DO10I=1,N

V=IBASE+I

C WRITE(*,*)VCTR(I)

IF(VCTR(I).NE.V)ERR=.TRUE.

10 CONTINUE

RETURN

END

In solving the large sets of linear equations in the �nite element analysis, the global sti�ness matrix and

load matrix are usually partitioned into bloks using Nv as blok number; it is neessary to keep at least

two bloks of sti�ness matries in the main memory to perform the deomposition proess[9℄.

As GET/SAVE only has an a�et on one in-ore array whih is reserved when you de�ne it, two di�erent

versions of the same array are needed at the same time. The alternatives of GET/SAVE supported by AMSF

are FETCH/STORE, these two subroutines an read/write data to any ontiguous main memory area other

than the one whih has just been reserved by DEFINE. The following ode segment is a proposed data

strutures to solve the large sets of linear equations. Using the diret aess mehanism of AMSF in the

bakward substitution phase of solution is always quiker than the onventional BACKSPACE method.

C

C... NS:BLOCKSIZE. NBLKS:NO.OFBLOCKS

C

CALLDEFINE(1,'GSTF',NBLKS,1,NS,1,0,LOC)

C... DEFINETWOINCOREBLOCKSFORUSE

CALLDEFINE(1,'BLKA',0,1,NS,1,0,LOCA)

CALLDEFINE(1,'BLKB',0,1,NS,1,0,LOCB)

.

CALLSOLVE('GSTF',IA(LOCA),IA(LOCB),NS,NBLK)

.

END

SUBROUTINESOLVE(NAME,A,B,NS,NBLK)

CHARACTER NAME*(*)

DIMENSION A(1),B(1)

.

.

C... READN-THBLOCKOFGSTFTOINCOREBLOCKA

CALLFETCH(1,NAME,N,A)

.

.

C... STOREBLOCKBTOM-THBLOCKOFGSTF

CALLSTORE(1,NAME,M,B)

..

RETURN

END

In above example, we retain aess to di�erent bloks of the same matrix, the 'GSTF', using FETCH and

STORE several times. Inside AMSF, it is fored to look up the diretory for the array entry point in database

eah time you aess, after the array is found, an appropriate operation is performed. It is uneonomi to

searh the loation of the same array. AMSF supports two funtionally equivalent subroutines QFETCH

and QSTORE for quik aess. Before using these subroutines, you should all funtion LOOK to get the

entry point of the array, then subsequent aess may use the same entry point, suh that several searhes to

the same array are thus eliminated. For example,

C

C... QUICKFETCH/STOREEXAMPLE

C

IP=LOOK(ND,'NAME')

IF(IP.EQ.0)STOP'NOTFOUND'

DO10NV=1,NVMAX

CALLQFETCH(IP,NV,A)

7

.

.

CALLQSTORE(IP,NV,A)

10 CONTINUE

If there is any out-of-ore array you don't need any more, you may just all subroutine REMOVE to

delete it from both main memory as well as its disk database versions.

From time to time, we need to move out-of-ore arrays between databases. The subroutine MOVE

is designed to opy an out-of-ore array 'Name1' in database Nd1 to another out-of-ore array 'Name2' in

database Nd2, providing that both databases Nd1 and Nd2 are opened. If array 'Name2' in Nd2 already

exists, then array 'Name2' must be onsistent with array 'Name1', otherwise AMSF will issue an error.

Another subroutine alled DBCOPY is used to opy out-of-ore arrays entirely from database Nd1 to Nd2.

If there are already arrays in Nd2, the DBCOPY subroutine will append all the arrays in Nd1 to Nd2. Arrays

that have been opied to Nd2 bear the same names as in Nd1.

AMSF is suitable to be applied to the solution of hypermatries[10℄. Hypermatries (or blok matrix)

an be de�ned as matries whih are partitioned by rows and olumns into submatries. An advantage of

using submatrix tehniques is that the submatries are onvenient data pakages for transfer to and from

baking stores. It is easier to organize storage transfers via AMSF if the submatries all have the same

dimensions. For example, to partition a 500 by 500 matrix into a hundred of 50 by 50 submatries an be

done by delaring

CALL DEFINE(1,'HYP',100,1,50,50,0,LOC),

Suessive operations on submatries may use GET and SAVE subroutines to transfer data on any

version quikly.

AMSF Utilities

The following four subroutines are used to list the diretory, sort the diretory, query detailed array

attributes, and �nd the memory status:

CALL DIR (Lun)

CALL DSORT

CALL ATTRIB (Nd,'Name',NvMax,Nt,Nr,N,Ms,Lo,Nvw,Ire,Io�,Nsize,Ndrop)

CALL MEMORY (Ndir,Nused,Nfree)

The CALL DIR(Lun) statement lists the opened database diretory to logial unit Lun, where Lun may

be a �le, the printer, or the CRT sreen. It is a good pratie to list the diretory out for arhives before

losing the database. Sine the diretory listing is in the order that the arrays are de�ned, it is diÆult to

look for a ertain array in the ondition that a number of arrays are de�ned. The CALL DSORT statement

sorts the diretory in alphabetial order, thus the diretory listing after DSORT is muh favored for the

user. Another funtion of DSORT is to hange AMSF internal array searh from sequential searh to binary

searh, a quiker method.

During program exeution, the CALL ATTRIB statement inquires about the full array attributes of an

array. The CALL MEMORY statement helps in monitoring the memory usages, Ndir returns the memory

used by diretory, Nused returns the memory used by arrays, and Nfree returns the available memory; all

measurements are in integer words. A listing of all the AMSF subroutines is given in Appendix A.

8

Adaption of Matrix Operational Subroutines to AMSF

It is easy to add matrix operational and omputational modules to AMSF. Most omputer enters

support general purpose vetor/matrix libraries, like IMSL, LINPACK, EISPACK, et. It is no neessary

to know what is really inside those libraries, only to be aware of their funtions and usages. To add those

modules to AMSF, the data strutures of AMSF must be known, then a driver subroutine to link library

subroutines to AMSF an be written. For example, if the addition of a real matries multipliation driver

MULT to AMSF is required, several things about the two operand matries and the resultant matrix, like

existene of operand arrays, the storage mode, ompatibility of the dimensions, et. should be onsidered.

The sample driver subroutine given below is using the IBM SSP matrix multipliation subroutines GMPRD

and MPRD to form a general real matrix multipliation module. Details may be obtained throughout by

going through the soure ode.

SUBROUTINEMULT(A,B,C,IERR)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

CHARACTER*(*)A,B,C

C

C... REALMATRIXMULTIPLICATIONMODULE C=A*B

C WHEREA,B,ANDCAREINCOREMATRICESOFDATABASE1

C

C THISISASAMPLEROUTINETOILLUSTRADETHELINKAGEBETWEEN

C AMSANDCOMMONLYAVAILABLEMATHEMATICALLIBRARY.

C INTHISROUTINE,WEUSEIBMSSPGMPRDANDMPRDSUBROUTINES

C

C IERR: ERRORINDICATOR(RETURNED)

C =0NOERROR

C =1MATRICESARENOTFOUNDORINCORE

C =2MATRICESARENOTREALTYPE

C =3DIMENSIONOFMATRICESARENOTCONSISTENT

C =4MATRIXCMUSTBEINGENERALSTORAGEMODE

C =5CCANNOTBEINTHESAMELOCATIONASAORB

C =6INCOREMEMORYOVERFLOW

COMMONMAVAIL,IA(1)

C... A,BINCORE?

CALLLOCATE(1,A,NT1,NR1,NC1,MS1,L1)

CALLLOCATE(1,B,NT2,NR2,NC2,MS2,L2)

IF(L1.LE.0.OR.L2.LE.0)THEN

IERR=1

RETURN

ENDIF

C... A,BREALMATRICES?

IF(NT1.NE.1.OR.NT2.NE.1)THEN

IERR=2

RETURN

ENDIF

C... A,BCONSISTENT?

IF(NC1.NE.NR2)THEN

IERR=3

RETURN

ENDIF

C... CINCORE?

CALLLOCATE(1,C,NT3,NR3,NC3,MS3,L3)

IF(L3.EQ.0)THEN

C CREATEC

IF(MS1.EQ.2.AND.MS2.EQ.2)THEN

MS3=2

ELSE

MS3=0

ENDIF

NT3=1

NR3=NR1

NC3=NC2

9

CALLDEFINE(1,C,0,NT3,NR3,NC3,MS3,L3)

IF(L3.EQ.0)THEN

IERR=6

RETURN

ENDIF

ELSE

C CCONSISTENT?

IF(L3.LT.0)CALLGET(1,C,1,L3)

IF(NT3.NE.1)THEN

IERR=2

RETURN

ENDIF

IF(NR1.NE.NR3.OR.NC2.NE.NC3)THEN

IERR=3

RETURN

ENDIF

IF(MS3.NE.0)THEN

IF(MS1.NE.2.OR.MS2.NE.2)THEN

IERR=4

RETURN

ENDIF

ENDIF

ENDIF

C... CINTHELOCATIONOFAORB?

IF(L3.EQ.L1.OR.L3.EQ.L2)THEN

IERR=5

RETURN

ENDIF

C... SELECTAPPROPRITESSPSUBROUTINES

IF(MS1.EQ.0.AND.MS2.EQ.0)THEN

CALLGMPRD(IA(L1),IA(L2),IA(L3),NR1,NC1,NC2)

ELSE

CALL MPRD(IA(L1),IA(L2),IA(L3),NR1,NC1,MS1,MS2,NC2)

ENDIF

IERR=0

RETURN

END

As the module is ompleted, the user may fous on the formulation of the problem to be solved, not on

the programming details. For example, multiplying matrix 'A' by matrix 'B' to form matrix 'C' is arried

out by simply issuing a statement CALL MULT('A','B','C',IERR). The following ode illustrates this.

PROGRAMMATMUL

IMPLICITINTEGER*4(I-N)

IMPLICITREAL*8(A-H,O-Z)

C

C... TESTMATRIXMULTIPLICATIONMODULEMULT(A,B,C,IERR)

C

COMMONMAVAIL,IA(30000)

MAVAIL=30000

CALLDBOPEN(1,'DBX','NEW')

CALLDEFINE(1,'A',0,1,3,2,0,L1)

CALLDEFINE(1,'B',0,1,2,2,1,L2)

IF(L2.EQ.0)THEN

WRITE(*,101)

GOTO100

ENDIF

CALLMATINP('A')

CALLMATINP('B')

CALLMULT('A','B','C',IERR)

CALLMATOUT('A')

CALLMATOUT('B')

IF(IERR.NE.0)THEN

10

WRITE(*,*) ' MULTERROR',IERR

ELSE

CALLMATOUT('C')

ENDIF

CALLDIR(0)

100 CALLDBCLOS(1,'DELETE')

101 FORMAT(' INCORESTORAGEOVERFLOW')

STOP

END

It is very important in designing the operational module that some array is derived due to the operation,

like the example above; 'A' multiply 'B' imply 'C', though 'C' is not de�ned at the beginning, but must be

generated by the operational module.

Due to the various availability mathematial libraries in omputer enters, and the fous of the appli-

ation program being di�erent, I do not present all the operational modules here.

Examples of Using AMSF

AMSF is simply a tool to help the user perform the tedious job of data array management. How to use

AMSF is all up to the programmer. The lever user will program into it, not in it. The following subsetions

are examples of the uses of AMSF.

A. Matrix Addition

This example gives the full listing of a simplest AMSF appliation using only dynami in-ore storage

alloations, but it is similar to any other omplex appliations.

C... THISPROGRAMSHOWYOUHOWTOUSEDYNAMICSTORAGE

C ALLOCATIONOFAMS

PROGRAMADDUP

IMPLICITINTEGER*4(I-N)

IMPLICITREAL*8(A-H,O-Z)

COMMON MAVAIL,IA(30000)

MAVAIL=30000

C... ENTERTHEDIMENSIONOFTWOMATRICESTOBEADDED

READ(*,*)NR,NC

C... STORAGEALLOCATIONS

CALLDBOPEN(1,'DB1','NEW')

CALLDEFINE(1,'MAT1',0,1,NR,NC,0,L1)

CALLDEFINE(1,'MAT2',0,1,NR,NC,0,L2)

CALLDEFINE(1,'MATS',0,1,NR,NC,0,L3)

IF(L3.EQ.0)THEN

WRITE(*,*) ' INCOREMEMORYOVERFLOW.'

STOP

ENDIF

C... READINTWOMATRICESTOBEADDED

CALLMATINP('MAT1')

CALLMATINP('MAT2')

C... ADDTHEMTOGETHER

CALLMATADD(IA(L1),IA(L2),IA(L3),NR,NC)

C... PRINTTHESUMMATIONMATRIXOUT

CALLMATOUT('MATS')

CALLDIR(0)

CALLDBCLOS(1,'DELETE')

STOP

END

11

C

SUBROUTINEMATADD(A,B,C,NR,NC)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION A(1),B(1),C(1)

DO10I=1,NR*NC

10 C(I)=A(I)+B(I)

RETURN

END

B. Appliation to FEM

In this example, we de�ne element sti�ness matrix and element nodal onnetion array with out-of-ore

versions equal to the total number of elements. As the loop overs all elements, the alulated element

sti�ness matrix is saved as orresponding out-of-ore version in the database. In the assembling phase, the

element sti�ness matrix is read bak from database one-by-one and added to the global sti�ness matrix.

C... APPLICATIONOFAMSINCOREANDOUT-OF-CORE

C DATAMANAGEMENTTOFEM

PROGRAMFEM

COMMON MAVAIL,IA(10000)

MAVAIL=10000

CALLDBOPEN(1,'FEMDB','NEW')

.

.

C... ELEMENTSTIFFNESSMATRIXANDCONNECTIONARRAYSTORAGEALLOCATION

C NEL:NUMBEROFELEMENTS

C NDOF:NUMBEROFLOCALDOFSINANELEMENT

CALLDEFINE(1,'ESTF',NEL,1,NDOF,NDOF,1,LOC1)

CALLDEFINE(1,'CONN',NEL,0,NDOF,1,0,LOC2)

C... EVALUATEELEMENTSTIFFNESSANDSAVETHEM

DO100I=1,NEL

.

.

CALLCALSTF(IA(LOC1),IA(LOC2), ...)

CALLSAVE(1,'ESTF',I)

CALLSAVE(1,'CONN',I)

100 CONTINUE

C... GLOBALSTIFFNESSSTORAGEALLOCATION

CALLDEFINE(1,'GSTF', ...,LOC3)

C... ASSEMBLYGLOBALSTIFFNESS

DO200I=1,NEL

CALLGET(1,'ESTF',I)

CALLGET(1,'CONN',I)

CALLASSEMB(IA(LOC1),IA(LOC2),IA(LOC3),....)

200 CONTINUE

.

.

CALLDBCLOS(1,'KEEP')

STOP

END

12

C. Sharing the Database

In this subsetion we want to re-use the element sti�ness matries whih were previously reated in sub-

setion B. The data an be easily transfered in and out by alling COPY, MOVE, and DBCOPY subroutines,

though not in the same database.

C... TRANSFERDATAFROMANOTHERDATABASE

PROGRAMSHARE

COMMON MAVAIL,IA(10000)

MAVAIL=10000

CALLDBOPEN(1,'NEWDB','NEW')

CALLDBOPEN(2,'FEMDB','OLD')

C... GET5THELEMENTSTIFFNESSMATRIXFROMDATABASE'FEMDB'

CALLGET(2,'ESTF',5,LOC1)

C... YOUCANUSEITINIA(LOC1)

C... ORYOUMAYCOPYITINTOCURRENTDATABASE

CALLCOPY(2,'ESTF',1,'TSTF')

.

.

C... YOUMAYGETANYARRAYFROM'FEMDB', IFYOUWISH

.

CALLDBCLOS(1,'KEEP')

STOP

END

D. Memory Paging Tehnique

In dealing with a large problem, due to the shortage of internal storage, it is always required to use the

memory paging tehnique. For example, a three{dimensional �nite element mesh of 10,000 nodes required

30,000 real numbers to store the nodal oordinates; if you are using 8{byte real variables to store them, it

takes over 230 KB just for nodal oordinates. In this ase, if you divide it into ten pages (ten versions in

AMSF's word), 1,000 nodes per page, every time you keep one page in internal memory, then just 23 KB

in-ore storage is required. In operations, manual ontrol of internal and external memory swapping should

provide, the proess is similar to the virtual memory system. However, diret use of the virtual memories

is not reommended. Sine virtual memories perform best when most aess are relatively lose to previous

aesses. This implies that transfers from external to internal storage are needed infrequently. Using the

manual method, we ould hoose an adequate page size whih is large enough to over the nodes around a

group of elements to minimize the swappings. On the other hand, diret use of the virtual memory , though

easier to implement, ould ause ineÆieny problem if improper page sizes are used, whih depends on how

well the available virtual memory system is implemented.

13

Internal Data Struture of AMSF

Database of AMSF is omposed by a single �xed{length diret aess �le; both arrays and diretories

are stored there. When a user issues a DBOPEN statement, AMSF reates a standard FORTRAN diret

aess �le, writes a reation date/time stamp to the �rst reord, then set the seond reord, and so on, as

available spae for the user. Every time the user reates an array using the DEFINE statement, AMSF

alloates enough onseutive in-ore spae in the blank ommon memory bank for the array, and also reates

a diretory in the memory bank to store the attributes of the array. If the array has out-of-ore versions (i.e.

NvMax>0), then besides the in-ore spae is alloated, AMSF reserves suÆient onseutive disk reords

for that array in whih the out-of-ore versions an be written or read bak in later operations. Inonsistent

in the array size and the disk �le reord length is not a problem, sine the diretory remembers the �rst

reord number and the o�set position where its out-of-ore versions ommene, so that the disk loation of

individual versions of the array an be alulated and aessed without diÆulty. After the user loses the

database using DBCLOS statement, the diretories in the main memory are appended to the end of the disk

database �le, whih may span to several reords. AMSF puts the reord number of diretory entry point in

the �rst reord before the �le is losed. One the database �le is reopened, AMSF ould learn the diretory

entry point from the �rst reord, and all the diretories are quikly brought bak to the internal memory,

and all arrays are ready for proessing again.

Sine the internal storage available for AMSF is a large integer array in the blank ommon area. The

in-ore arrays and their diretories are all stored there. During the operation of AMSF, the in-ore arrays

are alloated from the �rst element of the large integer array IA, and grow downward. The user ould use

LOCATE subroutine to �nd where a ertain in-ore array begins in the large integer array. On the other

hand, array attributes are stored in the diretory area whih are piled up from the bottom of the large

integer array. User ould use LOOK funtion to �nd where the diretory of a ertain array begins. As the

data grows large, the in-ore arrays and the diretories will ollide in the middle of the large integer array.

In suh ondition, the internal memory is said to be overowed. In this situation, the user an delete some

unused in-ore arrays via DELETE or DELALL subroutine to free some storage for ontinuous working.

For those arrays without out-of-ore versions, DELETE means deletion of both in-ore arrays as well as

assoiated diretories; for those arrays with out-of-ore versions, only in-ore arrays are deleted, the user an

use the GET statement to retrieve one of its out-of-ore versions, and its in-ore portion will be realloated

to reeive that version.

If the REMOVE subroutine is used to delete the out-of-ore versions of an array, the in-ore portion of

the array will be deleted �rst, then AMSF put a deletion mark in the diretory of the array instead of atual

delete it. Sine in high level language, suh as FORTRAN, there is no way to delete few reords within a

diret aess �le. If the user does not like them oupying some of your disk spae, a new database an be

opened using DBCOPY subroutine to dupliate entire database to the new one. Those deleted versions are

automatially negleted.

The attributes of an array are stored in the diretory. Eah diretory entry IP oupies 16 integer words

ontaining the following information,

IA(IP) : Nd, Database number

IA(IP+1) : First harater of the array name

IA(IP+2) : Seond harater of the array name

IA(IP+3) : Third harater of the array name

IA(IP+4) : Fourth harater of the array name

IA(IP+5) : Nt, data type

IA(IP+6) : Nr, number of rows

IA(IP+7) : N, number of olumns

IA(IP+8) : Ms, storage mode

IA(IP+9) : NvMax, number of out-of-ore versions

IA(IP+10) : Nvw, Maximum version written

14

IA(IP+11) : Ire, reord number where the out-of-ore versions ommene

IA(IP+12) : Io�, o�set position in Ire reord

IA(IP+13) : Lo, the loation of the �rst element in IA array

IA(IP+14) : Nsize, array size in integer words (per version)

IA(IP+15) : Deletion indiator of out-of-ore versions.

Conlusions

There are dozens of good algorithms and data strutures available for data management[11℄, but AMSF

was made a simple and pratial so that everyone an understand it. This enable sientists and engineers

an piee together more ompliated software tools that are tailored spei�ally for their needs. The use of

AMSF should provide sienti� ommunity with an e�etive management tool to rapidly develop or modify

quality programs at low ost. However, all the software developers shall be aware that the tar pit of software

engineering will ontinue to be stiky for a long time to ome[12℄. Hope that AMSF will shorten it a little

bit for you.

Referenes

1. P. J. Pahl. Data Management in Finite Element Analysis. Nonlinear Finite Element Analysis in Stru-

tural Mehanis, 715{741, Springer{Verlag, Berlin (1981).

2. C. L. Blakburn, O. O. Storaasli, and R. E. Fulton. The Role and Appliation of Database Management

in Integrated Computer{Aided Design. J. Airraft 20, No. 8 (Aug. 1983).

3. E. L. Wilson and M. I. Hoit. A Computer Adaptive Language for the Development of Strutural Analysis

Program. Comput. Strutures 19, No. 3, 321{338 (1984).

4. T. Sreekanta Murthy, Y-K. Shyy, and J. S. Arora. MIDAS: Management of Information for Design and

Analysis of Systems. Advanes in Engineering Software 8, No. 3, 149{158 (1986).

5. B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Moler, Matrix Eigensystem

Routines { EISPACK Guide, 2nd Edn. Springer{Verlag, New York (1976).

6. International Mathematial and Statistial Libraries, IMSL In., 2500 ParkWest Tower One, 2500 City-

West Boulevard, Houston, Texas.

7. J. J. Dongarra, C. B. Moler, J. R. Bunh, and G. W. Stewart, LINPACK Users' Guide, SIAM, Philadel-

phia (1979).

8. System/360 Sienti� Subroutine Pakage (SSP), version III, IBM Corp., Teh. Publiations Dept.,

White Plains, New York (1968).

9. E. L. Wilson, K. J. Bathe, and W. P. Doherty. Diret Solution of Large Systems of Linear Equations.

Comput. Strutures 4, 363{372 (1974).

10. G. von Fuhs, J. R. Roy, and E. Shrem. Hypermatrix Solution of Large Sets of Symmetri Positive{

De�nite Linear Equations. Computer Methods in Applied Mehanis and Engineering 1, 197-216 (1972).

11. A. V. Aho, J. E. Hoproft, and J. D. Ullman, Data Strutures and Algorithms, Addison{Wesley, Reading,

Mass. (1983).

12. F. P. Brooks, Jr., The Mythial Man{Month, Addison{Wesley, Reading, Mass. (1975).

15

Appendix A. Quik Referene of AMSF Subroutines

AMSF Database Open and Close Subroutines

a. Open database �le

CALL DBOPEN(Nd,'DBname',Status)

Nd: database number (Nd=1,2,3,...)

'DBname': database �le name (operating system dependent)

Status: 'New','Old', or 'Unknown'

b. Close database �le

CALL DBCLOS(Nd,Status)

Nd: database number (Nd=1,2,3,...)

Status: 'Keep', or 'Delete'

AMSF Inore Array Management Subroutines

a. De�ne an array (in-ore and out-of-ore)

CALL DEFINE(Nd,'Name',NvMax,Nt,Nr,N,Ms,Lo)

Nd: database number

'Name': array name (not more than 4 haraters long)

NvMax: Maximum version numbers in disk, zero if only in-ore demand

Nt: data type (0:integer, 1:real, 2:omplex)

Nr: number of rows (greater than 0; row vetor Nr=1)

N: number of olumns (greater than 0; olumn vetor N=1)

Ms: storage mode (0:general, 1:symmetri, 2:diagonal)

Lo: �rst element loation in IA array (returned); Lo=-NvMax if out-of-ore

b. Loate in-ore address of array 'Name'

CALL LOCATE(Nd,'Name',Nt,Nr,N,Ms,Lo)

Nd: database number

'Name': array name (not more than 4 haraters long)

Nt: data type (returned; 0:integer, 1:real, 2:omplex)

Nr: number of rows (returned)

N: number of olumns (returned)

Ms: storage mode (returned; 0:general, 1:symmetri, 2:diagonal)

Lo: �rst element loation in IA array (returned)

. Delete an in-ore array 'Name' of database Nd

CALL DELETE(Nd,'Name')

Nd: database number

'Name': array name (not more than 4 haraters long)

d. Delete all in-ore arrays of database Nd

CALL DELALL(Nd)

Nd: database number

e. Change array name from 'OldName' to 'NewName' in database Nd

CALL RENAME(Nd,'OldName','NewName')

Nd: database number

'OldName': Old array name

'NewName': New array name

f. Copy in-ore arrays Nd1,'Name1' to Nd2,'Name2'

CALL COPY (Nd1,'Name1',Nd2,'Name2')

Nd1: Soure database number

'Name1': array name in Nd1 to be opied from

Nd2: Destination database number

'Name2': array name in Nd2 to be opied to

16

AMSF Out-of-ore Array Management Subroutines

a. Save array 'Name' into version Nv of 'Name' in database Nd

CALL SAVE (Nd,'Name',Nv)

Nd: database number

'Name': array name (not more than 4 haraters long)

Nv: version number (1 � Nv � NvMax)

b. Get array 'Name' version Nv from database Nd

CALL GET (Nd,'Name',Nv,Lo)

Nd: database number

'Name': array name (not more than 4 haraters long)

Nv: version number (1 � Nv � NvMax)

Lo: �rst element loation in IA array (returned)

. Store an in-ore array AA to array 'Name' version Nv of database Nd

CALL STORE (Nd,'Name',Nv,AA)

Nd: database number

'Name': array name (not more than 4 haraters long)

Nv: version number (1 � Nv � NvMax)

AA: an in-ore array

d. Copy an out-of-ore array 'Name' version Nv of database Nd to the in-ore array AA

CALL FETCH (Nd,'Name',Nv,AA)

Nd: database number

'Name': array name (not more than 4 haraters long)

Nv: version number (1 � Nv � NvMax)

AA: an in-ore array

e. Find the diretory entry point of array 'Name'

Ip = LOOK(Nd,'Name')

Ip: address of diretory entry point

Nd: database number

'Name': array name (not more than 4 haraters long)

f. Quik disk store of array with diretory entry Ip

CALL QSTORE(Ip,Nv,Narray)

Ip: address of diretory entry point

Nv: version number (1 � Nv � NvMax)

Narray: an in-ore array

g. Quik disk feth of array with diretory entry Ip

CALL QFETCH(Ip,Nv,Narray)

Ip: address of diretory entry point

Nv: version number (1 � Nv � NvMax)

Narray: an in-ore array

h. Mark deletion of array 'Name' in database Nd

CALL REMOVE (Nd,'Name')

Nd: database number

'Name': array name (not more than 4 haraters long)

i. Copy out-of-ore array Nd1,'Name1' to Nd2, 'Name2'

CALL MOVE(Nd1,'Name1',Nd2,'Name2')

Nd1: soure database number

'Name1': soure array name (not more than 4 haraters long)

Nd2: destination database number

'Name2': destination array name (not more than 4 haraters long)

j. Copy one version of out-of-ore array Nd1,'Name1' to Nd2, 'Name2'

17

CALL MOVE1V(Nd1,'Name1',Nv1,Nd2,'Name2',Nv2)

Nd1: soure database number

'Name1': soure array name (not more than 4 haraters long)

Nv1: soure version number

Nd2: destination database number

'Name2': destination array name (not more than 4 haraters long)

Nv2: destination version number

k. Copy entire database Nd1 to Nd2 (out-of-ore arrays only)

CALL DBCOPY(Nd1,Nd2)

Nd1: soure database number

Nd2: destination database number

AMSF Utilities

a. Print out diretory to logial unit Lun

CALL DIR(Lun)

Lun: logial unit number (�le, printer, or sreen)

b. Sort array names in diretory

CALL DSORT

. Ask full array attributes of 'Name' in database Nd

CALL ATTRIB(Nd,'Name',NvMax,Nt,Nr,N,Ms,Lo,Nvw,Ire,Io�,Nsize,Ndrop)

Nd: database number

'Name': array name

NvMax: Maximum versions allowed in disk (returned)

Nt: data type (returned, 0:integer, 1:real, 2:omplex)

Nr: number of rows (returned, greater than 0)

N: number of olumns (returned, greater than 0)

Ms: storage mode (returned, 0:general, 1:symmetri, 2:diagonal)

Lo: �rst element loation in IA array (returned)

NvW: Maximum version number in disk (returned)

Ire, Io�: reord number and o�set of disk �le ontaining the �rst element (returned)

Nsize: array size in integer words

Ndrop: out-of-ore array deletion indiator (Ndrop6=0, removed)

d. Get values of used and unused memories

CALL MEMORY(Ndir,Nused,Nfree)

Ndir: in-ore memory used by diretories (in integer words)

Nused: in-ore memory used by arrays (in integer words)

Nfree: in-ore memory available (in integer words)

(Ndir + Nused + Nfree = MAVAIL)

e. Turn o�/on in-ore memory hek toggle

CALL MEMCHK(Mode)

Mode='ative' , AMS aborted if out-of-memory (default)

Mode='passive', turn o� memory hek toggle

AMSF Operational Module

a. Interative matrix input routine

CALL MATINP('Name')

'Name': array name (not more than 4 haraters long)

b. Interative matrix output routine

CALL MATOUT('Name')

'Name': array name (not more than 4 haraters long)

18

