
Array Management System { Fortran Version (AMSF)

Version 2.0

by

Tzong{Shuoh Yangy

Department of Civil Engineering

University of California at Berkeley

Revised: De
ember, 1990

The version 1.2 of AMSF was published in

Computers & Stru
tures Vol. 33, No. 6, pp. 1507-1527, 1989.

Abstra
t

The Array Management System { Fortran version (AMSF) is an integrated set of array management tools

designed to in
rease the produ
tivity of te
hni
al programmers engaged in intensive matrix
omputational

appli
ations. AMSF is
omposed of a set of easy-to-use in-
ore and out-of-
ore data management subroutines

written in FORTRAN 77. The in-
ore array management subroutines of AMSF allows dynami
 storage

allo
ation to be a

omplished with integer, real, and
omplex data with a minimum of programming e�ort.

The out-of-
ore array management subroutines of AMSF support simple operations to allow array transfer

between in-
ore and out-of-
ore systems and allow di�erent programs to a

ess the same data. The out-

of-
ore data management provides for dire
t a

ess database �le to speed up the input/output operations.

Multiple databases are allowed to be a

essed by a program, this provides an easy way to share data and

restart. This integrated database environment is suitable to be the kernel of a software proje
t with several

programmers and data
ommuni
ations among them.

y Graduate student. Can be rea
hed at tsyang�
e.berkeley.edu

1

Introdu
tion

Management of information has be
ome an extremely essential task in
omputer-aided design and en-

gineering analysis system. Sin
e the volume of data needed to de�ne and solve is giganti
 even for the

medium-sized problems, it is generally more
onvenient to
onstru
t a database on auxiliary mass storage

devi
es for ea
h problem. Great progress has been made in this area sin
e the early 1980s[1-4℄. Due to the

fa
t that most engineering data are in array form (list, table, ve
tor, and matrix), whi
h is quite di�erent

ompared to business dis
rete data, te
hniques of in-
ore and out-of-
ore array managements must be in
or-

porated in eÆ
ient
odes su
h that arrays
an be stored in the disk and restored ba
k to RAM dynami
ally

and qui
kly. Commer
ially, the available database management systems (DBMS) are mostly designed for

business usage only. Using su
h business DBMS to handle engineering data seems tedious and ineÆ
ient in

operations.

AMSF is devised as a tool for programmers who design
omputer-aided design programs, and heavily

matrix operational
odes. These in
lude analog
ir
uit simulator, statisti
al analysis, dense or sparse equa-

tions solving, simulation, and in parti
ularly, the �nite element program development. Features of AMSF

are the following:

a. EÆ
ient memory allo
ation te
hnique are provided for array de
laration. Arrays of data may be integer,

real, or
omplex. Storage mode of matrix
an be general, symmetri
, or diagonal.

b. Arrays in AMSF are referen
ed by the symboli
 name, not by the address; a friendlier method enables

the user to tailor and maintain
omputer
odes easily.

. Arrays in main memory are
losely related to an out-of-
ore mass storage disk. A spe
i�
 array
an be

saved in database and retrieved later via dire
t disk a

ess. The same array
an have several di�erent

versions of ba
kup in the storage disk.

d. On
e an array is removed from main memory, storage previously o

upied by the array is released and

an be used by other arrays. Fragmentations due to memory deallo
ation are automati
ally pa
ked, so

that a maximum
ontiguous memory spa
e
an be provided for later use.

e. Several databases
an be used simultaneously. Arrays
an be
opied to (or from) other databases, su
h

that data sharing and program restart are possible.

f. Matrix operation modules, like EISPACK[5℄, IMSL[6℄, LINPACK[7℄, and SSP[8℄,
an be easily adapted

to AMSF.

Initialization of AMSF Databases

Dynami
 storage allo
ation is now a standard feature in modern
omputer languages, su
h as C and

Pas
al, but FORTRAN does not allow dynami
 memory allo
ation or
hanging an array size dire
tly during

program exe
ution. One of the fun
tions of AMSF is to
ontrol and maintain the pseudo{dynami
 memory

allo
ation and deallo
ation pro
esses of various sizes of arrays. It is ne
essary for the appli
ation programmer

to reserve a large
ontiguous memory spa
e via de
laring a large array for use by AMSF as a memory bank.

All arrays are de�ned as one-dimensional arrays, and stored sequentially in one overall array
alled IA.

The total spa
e o

upied by all in-
ore arrays is limited only by the size of the large array de�ned in the

main program,

COMMON MAVAIL, IA(30000)

MAVAIL = 30000

where MAVAIL (memory available) will be the a
tual size of the IA array.

Before AMSF takes over the
ontrol of the array management task, a
all to subroutine DBOPEN must

be issued, su
h that a disk database �le is
reated for use as both in-
ore and out-of-
ore array operational

environment. At the end of the appli
ation program, a
all to subroutine DBCLOS will terminate AMSF

and shutdown the database �le.

The two subroutines whi
h are used to open/
lose databases (in disk �les) are
alled by the following

statements:

CALL DBOPEN(Nd,'DBname',Status)

2

CALL DBCLOS(Nd,Status)

The subroutine DBOPEN opens a database 'DBname' and assigns Nd as a database number. The

database name 'DBname' is also used as the �le name in the
omputer system; thus the length of 'DBname'

is dependent on your
omputer site. There is a
onditional string
onstant
alled Status. You
an spe
ify

Status = 'old' to reopen an old database, or spe
ify Status = 'new' to initialize a new one. If you spe
ify

Status = 'unknown' and the database already exits, then DBOPEN opens the old database; otherwise a

new database is
reated and opened. Another fun
tion of DBOPEN is to initialize AMSF, i.e., DBOPEN

with Nd=1 should be
alled before any AMSF subroutine
an be used. The database with Nd=1 is
alled

the master database. Several databases
an be opened and used simultaneously by using Nd = 1,2,3,... to

distinguish between them. All databases ex
ept Nd=1 are
alled se
ondary databases.

The subroutine DBCLOS
loses the database previously opened and stores the dire
tory �rmly together

with its array data. If Status = 'delete', the database �le will be deleted after
losing. You
an spe
ify Status

= 'keep' if the database are going to be reused again. It is important to note that, if several databases are

used, the master database must be the �nal one to be
losed. Closing the master database implies that all

un
losed se
ondary databases will be
losed together.

A program fragment listed below is a sample to show the arrangement used to initialize and terminate

AMSF in the appli
ation
ode:

PROGRAMSAMPLE

C... SETUPMEMORYBANK

COMMONMAVAIL, IA(30000)

MAVAIL=30000

C... OPENMASTERDATABASE

CALLDBOPEN(1,'DBFILE','NEW')

.

.

. PLACE YOUR APPLICATION CODES HERE

.

.

C... CLOSEMASTERANDALLUNCLOSEDSECONDARYDATABASES

CALLDBCLOS(1,'KEEP')

STOP'DONE'

END

In the
ase where a fatal error o

urs in your appli
ation program, the integrity of AMSF databases is

ensured by a
all to DBCLOS(1,'keep'). This is always ne
essary before the appli
ation program is
eased.

3

Fun
tion Des
ription of In-
ore Array Management

The series of subroutines whi
h are presented in this se
tion are designed to allow storage to be easily

and dynami
ally allo
ated and managed during the exe
ution of the
omputer
ode. It also allows data to

be a

essed from any subroutine without passing the array names through arguments to subroutines.

Ea
h subroutine whi
h
ommuni
ates with the AMSF requires a statement of the following form:

COMMON MAVAIL, IA(1)

All arrays whi
h are
ontained in the AMSF database system are designated by a four-
hara
ter ASCII

name whi
h is sele
ted by the programmer.

Five subroutines whi
h are used to allo
ate and manage storage in IA array are
alled by the following

statements:

CALL DEFINE(Nd,'Name',NvMax,Nt,Nr,N
,Ms,Lo
)

CALL LOCATE(Nd,'Name',Nt,Nr,N
,Ms,Lo
)

CALL DELETE(Nd,'Name')

CALL DELALL(Nd)

CALL RENAME(Nd,'OldName','NewName')

where Nd is the database number, and 'Name' is the four-
hara
ter array name and is assigned by the user.

The subroutine DEFINE reserves storage for array of Nt data type, where Nt=0 for integer, Nt=1 for

real, Nt=2 for Complex. The NvMax is the number of versions of the array to be stored in the disk database

�le. If NvMax=0, only in-
ore array is de�ned. If NvMax > 0, then besides de�ning in-
ore array, the

out-of-
ore disk spa
es are reserved for it and
lear to zero values. Ea
h time an array has been de�ned, in

addition to allo
ate spa
e in IA array, a dire
tory will be
reated
ontaining the array's attributes. AMSF

uses the dire
tories to manage all in-
ore arrays and out-of-
ore disk databases.

Ms = 0;

0

B

�

a

11

a

12

a

13

a

14

a

21

a

22

a

23

a

24

a

31

a

32

a

33

a

34

a

41

a

42

a

43

a

44

1

C

A

�!

0

B

�

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1

C

A

Ms = 1;

0

B

�

a

11

Sym:

a

21

a

22

a

31

a

32

a

33

a

41

a

42

a

43

a

44

1

C

A

�!

0

B

�

1

2 3

4 5 6

7 8 9 10

1

C

A

Ms = 2;

0

B

�

a

11

a

22

a

33

a

44

1

C

A

�!

0

B

�

1

2

3

4

1

C

A

Figure 1. Storage mode (General, Symmetri
, and Diagonal)

The array is spe
i�ed to have Nr rows and N

olumns. The value of Ms indi
ates the storage mode of

the matrix; Ms=0 for general matrix, Ms=1 for symmetri
 matrix, and Ms=2 for diagonal matrix. Matrix

storage modes are
ompatible with several mathemati
al libraries, like EISPACK, IMSL, LINPACK, and

SSP. Figure 1 illustrates ea
h storage mode. This
apa
ity has been implemented using the ve
tor storage

approa
h. General matri
es of order Nr by N
 require Nr �N
 memory
ells. Symmetri
 matri
es of order

4

N may be stored in a ve
tor of only N � (N +1)=2 storage
ells. Diagonal matri
es of order N may be stored

in a ve
tor with N storage lo
ations. If the free memory suÆ
es for the request in de�ning a new array,

the value of Lo
 is returned whi
h indi
ates the lo
ation of its �rst term in IA array. If there is not enough

storage for the array, Lo
 is returned with value zero.

The subroutine LOCATE returns the address Lo
, data type Nt, the number of rows Nr, and the number

of
olumns N
 of array 'Name' whi
h have been de�ned. The value Lo
 will be zero if the array has not

previously been de�ned or not in the main memory. If the array already exits in disk database and not in

the main memory, then a value of Lo
= �NvMax is returned. The GET subroutine is used to retrieve it

(explained later).

The subroutine DELETE removes the array 'Name' from the in-
ore storage area, but keeps all NvMax

versions in an out-of-
ore disk �le, thus releasing the storage for use by other data. It should be noted that

new arrays are always added at the end of the IA array. Therefore, if arrays are deleted the other arrays

will be relo
ated in storage and any new array will be added at the end of the IA array.

The subroutine DELALL removes all arrays from the in-
ore storage area, and then releases all the

storage spa
e for use by other data. O

asionally the array name may need to be
hanged, the subroutine

RENAME
an be used to do this.

There are many
ases when one needs data from other databases. AMSF supports a subroutine to help

you transfer the data in the following
alling form,

CALL COPY (Nd1,'Name1',Nd2,'Name2')

Subroutine COPY dupli
ates in-
ore array 'Name1' in database Nd1 to array 'Name2' of database Nd2.

Both of them should be in-
ore arrays providing that the data type and array dimension of both arrays are

onsistent, otherwise an error message will be issued.

Fun
tion Des
ription of Out-of-Core Array Management

The subroutines presented in this se
tion are designed to perform the out-of-
ore array management

and data transfer between di�erent databases. Nine subroutines and a fun
tion whi
h are used to save and

retrieve arrays in database are
alled by the following statements:

CALL SAVE (Nd,'Name',Nv)

CALL GET (Nd,'Name',Nv,Lo
)

CALL STORE (Nd,'Name',Nv,Narray)

CALL FETCH (Nd,'Name',Nv,Narray)

IP = LOOK(Nd,'Name')

CALL QSTORE (Ip,Nv,Narray)

CALL QFETCH (Ip,Nv,Narray)

CALL REMOVE (Nd,'Name')

CALL MOVE (Nd1,'Name1',Nd2,'Name2')

CALL DBCOPY (Nd1,Nd2)

The subroutine SAVE writes in-
ore array 'Name' into disk database Nd. Nv spe
i�es the number of

the version to be written in the database �le. Nv must be a positive nonzero integer, whi
h is less than or

equal to NvMax of the array. If the Nv version of the array in disk has previously been written, the later

SAVE will repla
e the previous one. An array may have only one version or several versions depends on the

user's need. For example, in a �nite element analysis program you may assign element sti�ness matrix to a

name
alled 'ESTF', use Nv as element number, and set NvMax to the number of elements.

The subroutine GET retrieves array 'Name', version Nv, from the disk database and restores it into

main memory. The value Lo
 is returned after GET, whi
h indi
ates the �rst element lo
ation of array

'Name' in IA array. If the array already exists in main memory, the array just read from the disk will

supersede it.

5

The fun
tions of GET and SAVE are just like the dire
t a

ess READ and WRITE statements in

FORTRAN 77. By analogy, the re
ord number in dire
t a

ess is fun
tionally the same as the version

number.

To illustrate the high speed dire
t a

ess me
hanism of AMSF, the following sample program writes 100

versions of a real array in reverse order and reads ba
k in usual order.

PROGRAMTEST

IMPLICITINTEGER*4(I-N)

C

C... WRITEARRAYSINREVERSEORDER,THENREADBACKINUSUALORDER

C

LOGICAL ERR

COMMON MAVAIL, IA(30000)

MAVAIL=30000

WRITE(*,*) 'CREATEDATBASE...'

CALLDBOPEN(1,'DBTEST','NEW')

C... DEFINEVCTR,A500ELEMENTSREALVECTORWITH100VERSIONS

N =500

NVMAX=100

CALLDEFINE(1,'VCTR',NVMAX,1,N,1,0,LOC)

C... GENERATEVCTRANDSAVEITINDISK

IBASE=N*(NVMAX-1)

DO10NV=NVMAX,1,-1

WRITE(*,*) 'GENERATEANDSAVEVERSION',NV

CALLSETVAL(IA(LOC),N,IBASE)

CALLSAVE(1,'VCTR',NV)

IBASE=IBASE- N

10 CONTINUE

C... READVCTRBACKTORAMANDCHECKFORCORRECTNESS

IBASE=0

DO20NV=1,NVMAX

WRITE(*,*) 'READANDCHECKVERSION',NV

CALLGET(1,'VCTR',NV,LOC)

CALLCHECK(IA(LOC),N,IBASE,ERR)

IF(ERR)THEN

WRITE(*,30)

ELSE

WRITE(*,40)

ENDIF

IBASE=IBASE+N

20 CONTINUE

CALLDBCLOS(1,'DELETE')

STOP'DONE.'

30 FORMAT(1X,'... ERROROCCURS')

40 FORMAT(1X,'... NOERROR')

END

SUBROUTINESETVAL(VCTR,N,IBASE)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

C... SETVCTRVALUES

DIMENSION VCTR(N)

DO10I=1,N

10 VCTR(I)=IBASE+I

RETURN

END

SUBROUTINECHECK(VCTR,N,IBASE,ERR)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

C... CHECKVCTRVALUES

DIMENSION VCTR(N)

LOGICAL ERR

ERR=.FALSE.

6

DO10I=1,N

V=IBASE+I

C WRITE(*,*)VCTR(I)

IF(VCTR(I).NE.V)ERR=.TRUE.

10 CONTINUE

RETURN

END

In solving the large sets of linear equations in the �nite element analysis, the global sti�ness matrix and

load matrix are usually partitioned into blo
ks using Nv as blo
k number; it is ne
essary to keep at least

two blo
ks of sti�ness matri
es in the main memory to perform the de
omposition pro
ess[9℄.

As GET/SAVE only has an a�e
t on one in-
ore array whi
h is reserved when you de�ne it, two di�erent

versions of the same array are needed at the same time. The alternatives of GET/SAVE supported by AMSF

are FETCH/STORE, these two subroutines
an read/write data to any
ontiguous main memory area other

than the one whi
h has just been reserved by DEFINE. The following
ode segment is a proposed data

stru
tures to solve the large sets of linear equations. Using the dire
t a

ess me
hanism of AMSF in the

ba
kward substitution phase of solution is always qui
ker than the
onventional BACKSPACE method.

C

C... NS:BLOCKSIZE. NBLKS:NO.OFBLOCKS

C

CALLDEFINE(1,'GSTF',NBLKS,1,NS,1,0,LOC)

C... DEFINETWOINCOREBLOCKSFORUSE

CALLDEFINE(1,'BLKA',0,1,NS,1,0,LOCA)

CALLDEFINE(1,'BLKB',0,1,NS,1,0,LOCB)

.

CALLSOLVE('GSTF',IA(LOCA),IA(LOCB),NS,NBLK)

.

END

SUBROUTINESOLVE(NAME,A,B,NS,NBLK)

CHARACTER NAME*(*)

DIMENSION A(1),B(1)

.

.

C... READN-THBLOCKOFGSTFTOINCOREBLOCKA

CALLFETCH(1,NAME,N,A)

.

.

C... STOREBLOCKBTOM-THBLOCKOFGSTF

CALLSTORE(1,NAME,M,B)

..

RETURN

END

In above example, we retain a

ess to di�erent blo
ks of the same matrix, the 'GSTF', using FETCH and

STORE several times. Inside AMSF, it is for
ed to look up the dire
tory for the array entry point in database

ea
h time you a

ess, after the array is found, an appropriate operation is performed. It is une
onomi
 to

sear
h the lo
ation of the same array. AMSF supports two fun
tionally equivalent subroutines QFETCH

and QSTORE for qui
k a

ess. Before using these subroutines, you should
all fun
tion LOOK to get the

entry point of the array, then subsequent a

ess may use the same entry point, su
h that several sear
hes to

the same array are thus eliminated. For example,

C

C... QUICKFETCH/STOREEXAMPLE

C

IP=LOOK(ND,'NAME')

IF(IP.EQ.0)STOP'NOTFOUND'

DO10NV=1,NVMAX

CALLQFETCH(IP,NV,A)

7

.

.

CALLQSTORE(IP,NV,A)

10 CONTINUE

If there is any out-of-
ore array you don't need any more, you may just
all subroutine REMOVE to

delete it from both main memory as well as its disk database versions.

From time to time, we need to move out-of-
ore arrays between databases. The subroutine MOVE

is designed to
opy an out-of-
ore array 'Name1' in database Nd1 to another out-of-
ore array 'Name2' in

database Nd2, providing that both databases Nd1 and Nd2 are opened. If array 'Name2' in Nd2 already

exists, then array 'Name2' must be
onsistent with array 'Name1', otherwise AMSF will issue an error.

Another subroutine
alled DBCOPY is used to
opy out-of-
ore arrays entirely from database Nd1 to Nd2.

If there are already arrays in Nd2, the DBCOPY subroutine will append all the arrays in Nd1 to Nd2. Arrays

that have been
opied to Nd2 bear the same names as in Nd1.

AMSF is suitable to be applied to the solution of hypermatri
es[10℄. Hypermatri
es (or blo
k matrix)

an be de�ned as matri
es whi
h are partitioned by rows and
olumns into submatri
es. An advantage of

using submatrix te
hniques is that the submatri
es are
onvenient data pa
kages for transfer to and from

ba
king stores. It is easier to organize storage transfers via AMSF if the submatri
es all have the same

dimensions. For example, to partition a 500 by 500 matrix into a hundred of 50 by 50 submatri
es
an be

done by de
laring

CALL DEFINE(1,'HYP',100,1,50,50,0,LOC),

Su

essive operations on submatri
es may use GET and SAVE subroutines to transfer data on any

version qui
kly.

AMSF Utilities

The following four subroutines are used to list the dire
tory, sort the dire
tory, query detailed array

attributes, and �nd the memory status:

CALL DIR (Lun)

CALL DSORT

CALL ATTRIB (Nd,'Name',NvMax,Nt,Nr,N
,Ms,Lo
,Nvw,Ire
,Io�,Nsize,Ndrop)

CALL MEMORY (Ndir,Nused,Nfree)

The CALL DIR(Lun) statement lists the opened database dire
tory to logi
al unit Lun, where Lun may

be a �le, the printer, or the CRT s
reen. It is a good pra
ti
e to list the dire
tory out for ar
hives before

losing the database. Sin
e the dire
tory listing is in the order that the arrays are de�ned, it is diÆ
ult to

look for a
ertain array in the
ondition that a number of arrays are de�ned. The CALL DSORT statement

sorts the dire
tory in alphabeti
al order, thus the dire
tory listing after DSORT is mu
h favored for the

user. Another fun
tion of DSORT is to
hange AMSF internal array sear
h from sequential sear
h to binary

sear
h, a qui
ker method.

During program exe
ution, the CALL ATTRIB statement inquires about the full array attributes of an

array. The CALL MEMORY statement helps in monitoring the memory usages, Ndir returns the memory

used by dire
tory, Nused returns the memory used by arrays, and Nfree returns the available memory; all

measurements are in integer words. A listing of all the AMSF subroutines is given in Appendix A.

8

Adaption of Matrix Operational Subroutines to AMSF

It is easy to add matrix operational and
omputational modules to AMSF. Most
omputer
enters

support general purpose ve
tor/matrix libraries, like IMSL, LINPACK, EISPACK, et
. It is no ne
essary

to know what is really inside those libraries, only to be aware of their fun
tions and usages. To add those

modules to AMSF, the data stru
tures of AMSF must be known, then a driver subroutine to link library

subroutines to AMSF
an be written. For example, if the addition of a real matri
es multipli
ation driver

MULT to AMSF is required, several things about the two operand matri
es and the resultant matrix, like

existen
e of operand arrays, the storage mode,
ompatibility of the dimensions, et
. should be
onsidered.

The sample driver subroutine given below is using the IBM SSP matrix multipli
ation subroutines GMPRD

and MPRD to form a general real matrix multipli
ation module. Details may be obtained throughout by

going through the sour
e
ode.

SUBROUTINEMULT(A,B,C,IERR)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

CHARACTER*(*)A,B,C

C

C... REALMATRIXMULTIPLICATIONMODULE C=A*B

C WHEREA,B,ANDCAREINCOREMATRICESOFDATABASE1

C

C THISISASAMPLEROUTINETOILLUSTRADETHELINKAGEBETWEEN

C AMSANDCOMMONLYAVAILABLEMATHEMATICALLIBRARY.

C INTHISROUTINE,WEUSEIBMSSPGMPRDANDMPRDSUBROUTINES

C

C IERR: ERRORINDICATOR(RETURNED)

C =0NOERROR

C =1MATRICESARENOTFOUNDORINCORE

C =2MATRICESARENOTREALTYPE

C =3DIMENSIONOFMATRICESARENOTCONSISTENT

C =4MATRIXCMUSTBEINGENERALSTORAGEMODE

C =5CCANNOTBEINTHESAMELOCATIONASAORB

C =6INCOREMEMORYOVERFLOW

COMMONMAVAIL,IA(1)

C... A,BINCORE?

CALLLOCATE(1,A,NT1,NR1,NC1,MS1,L1)

CALLLOCATE(1,B,NT2,NR2,NC2,MS2,L2)

IF(L1.LE.0.OR.L2.LE.0)THEN

IERR=1

RETURN

ENDIF

C... A,BREALMATRICES?

IF(NT1.NE.1.OR.NT2.NE.1)THEN

IERR=2

RETURN

ENDIF

C... A,BCONSISTENT?

IF(NC1.NE.NR2)THEN

IERR=3

RETURN

ENDIF

C... CINCORE?

CALLLOCATE(1,C,NT3,NR3,NC3,MS3,L3)

IF(L3.EQ.0)THEN

C CREATEC

IF(MS1.EQ.2.AND.MS2.EQ.2)THEN

MS3=2

ELSE

MS3=0

ENDIF

NT3=1

NR3=NR1

NC3=NC2

9

CALLDEFINE(1,C,0,NT3,NR3,NC3,MS3,L3)

IF(L3.EQ.0)THEN

IERR=6

RETURN

ENDIF

ELSE

C CCONSISTENT?

IF(L3.LT.0)CALLGET(1,C,1,L3)

IF(NT3.NE.1)THEN

IERR=2

RETURN

ENDIF

IF(NR1.NE.NR3.OR.NC2.NE.NC3)THEN

IERR=3

RETURN

ENDIF

IF(MS3.NE.0)THEN

IF(MS1.NE.2.OR.MS2.NE.2)THEN

IERR=4

RETURN

ENDIF

ENDIF

ENDIF

C... CINTHELOCATIONOFAORB?

IF(L3.EQ.L1.OR.L3.EQ.L2)THEN

IERR=5

RETURN

ENDIF

C... SELECTAPPROPRITESSPSUBROUTINES

IF(MS1.EQ.0.AND.MS2.EQ.0)THEN

CALLGMPRD(IA(L1),IA(L2),IA(L3),NR1,NC1,NC2)

ELSE

CALL MPRD(IA(L1),IA(L2),IA(L3),NR1,NC1,MS1,MS2,NC2)

ENDIF

IERR=0

RETURN

END

As the module is
ompleted, the user may fo
us on the formulation of the problem to be solved, not on

the programming details. For example, multiplying matrix 'A' by matrix 'B' to form matrix 'C' is
arried

out by simply issuing a statement CALL MULT('A','B','C',IERR). The following
ode illustrates this.

PROGRAMMATMUL

IMPLICITINTEGER*4(I-N)

IMPLICITREAL*8(A-H,O-Z)

C

C... TESTMATRIXMULTIPLICATIONMODULEMULT(A,B,C,IERR)

C

COMMONMAVAIL,IA(30000)

MAVAIL=30000

CALLDBOPEN(1,'DBX','NEW')

CALLDEFINE(1,'A',0,1,3,2,0,L1)

CALLDEFINE(1,'B',0,1,2,2,1,L2)

IF(L2.EQ.0)THEN

WRITE(*,101)

GOTO100

ENDIF

CALLMATINP('A')

CALLMATINP('B')

CALLMULT('A','B','C',IERR)

CALLMATOUT('A')

CALLMATOUT('B')

IF(IERR.NE.0)THEN

10

WRITE(*,*) ' MULTERROR',IERR

ELSE

CALLMATOUT('C')

ENDIF

CALLDIR(0)

100 CALLDBCLOS(1,'DELETE')

101 FORMAT(' INCORESTORAGEOVERFLOW')

STOP

END

It is very important in designing the operational module that some array is derived due to the operation,

like the example above; 'A' multiply 'B' imply 'C', though 'C' is not de�ned at the beginning, but must be

generated by the operational module.

Due to the various availability mathemati
al libraries in
omputer
enters, and the fo
us of the appli-

ation program being di�erent, I do not present all the operational modules here.

Examples of Using AMSF

AMSF is simply a tool to help the user perform the tedious job of data array management. How to use

AMSF is all up to the programmer. The
lever user will program into it, not in it. The following subse
tions

are examples of the uses of AMSF.

A. Matrix Addition

This example gives the full listing of a simplest AMSF appli
ation using only dynami
 in-
ore storage

allo
ations, but it is similar to any other
omplex appli
ations.

C... THISPROGRAMSHOWYOUHOWTOUSEDYNAMICSTORAGE

C ALLOCATIONOFAMS

PROGRAMADDUP

IMPLICITINTEGER*4(I-N)

IMPLICITREAL*8(A-H,O-Z)

COMMON MAVAIL,IA(30000)

MAVAIL=30000

C... ENTERTHEDIMENSIONOFTWOMATRICESTOBEADDED

READ(*,*)NR,NC

C... STORAGEALLOCATIONS

CALLDBOPEN(1,'DB1','NEW')

CALLDEFINE(1,'MAT1',0,1,NR,NC,0,L1)

CALLDEFINE(1,'MAT2',0,1,NR,NC,0,L2)

CALLDEFINE(1,'MATS',0,1,NR,NC,0,L3)

IF(L3.EQ.0)THEN

WRITE(*,*) ' INCOREMEMORYOVERFLOW.'

STOP

ENDIF

C... READINTWOMATRICESTOBEADDED

CALLMATINP('MAT1')

CALLMATINP('MAT2')

C... ADDTHEMTOGETHER

CALLMATADD(IA(L1),IA(L2),IA(L3),NR,NC)

C... PRINTTHESUMMATIONMATRIXOUT

CALLMATOUT('MATS')

CALLDIR(0)

CALLDBCLOS(1,'DELETE')

STOP

END

11

C

SUBROUTINEMATADD(A,B,C,NR,NC)

IMPLICIT INTEGER*4(I-N)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION A(1),B(1),C(1)

DO10I=1,NR*NC

10 C(I)=A(I)+B(I)

RETURN

END

B. Appli
ation to FEM

In this example, we de�ne element sti�ness matrix and element nodal
onne
tion array with out-of-
ore

versions equal to the total number of elements. As the loop
overs all elements, the
al
ulated element

sti�ness matrix is saved as
orresponding out-of-
ore version in the database. In the assembling phase, the

element sti�ness matrix is read ba
k from database one-by-one and added to the global sti�ness matrix.

C... APPLICATIONOFAMSINCOREANDOUT-OF-CORE

C DATAMANAGEMENTTOFEM

PROGRAMFEM

COMMON MAVAIL,IA(10000)

MAVAIL=10000

CALLDBOPEN(1,'FEMDB','NEW')

.

.

C... ELEMENTSTIFFNESSMATRIXANDCONNECTIONARRAYSTORAGEALLOCATION

C NEL:NUMBEROFELEMENTS

C NDOF:NUMBEROFLOCALDOFSINANELEMENT

CALLDEFINE(1,'ESTF',NEL,1,NDOF,NDOF,1,LOC1)

CALLDEFINE(1,'CONN',NEL,0,NDOF,1,0,LOC2)

C... EVALUATEELEMENTSTIFFNESSANDSAVETHEM

DO100I=1,NEL

.

.

CALLCALSTF(IA(LOC1),IA(LOC2), ...)

CALLSAVE(1,'ESTF',I)

CALLSAVE(1,'CONN',I)

100 CONTINUE

C... GLOBALSTIFFNESSSTORAGEALLOCATION

CALLDEFINE(1,'GSTF', ...,LOC3)

C... ASSEMBLYGLOBALSTIFFNESS

DO200I=1,NEL

CALLGET(1,'ESTF',I)

CALLGET(1,'CONN',I)

CALLASSEMB(IA(LOC1),IA(LOC2),IA(LOC3),....)

200 CONTINUE

.

.

CALLDBCLOS(1,'KEEP')

STOP

END

12

C. Sharing the Database

In this subse
tion we want to re-use the element sti�ness matri
es whi
h were previously
reated in sub-

se
tion B. The data
an be easily transfered in and out by
alling COPY, MOVE, and DBCOPY subroutines,

though not in the same database.

C... TRANSFERDATAFROMANOTHERDATABASE

PROGRAMSHARE

COMMON MAVAIL,IA(10000)

MAVAIL=10000

CALLDBOPEN(1,'NEWDB','NEW')

CALLDBOPEN(2,'FEMDB','OLD')

C... GET5THELEMENTSTIFFNESSMATRIXFROMDATABASE'FEMDB'

CALLGET(2,'ESTF',5,LOC1)

C... YOUCANUSEITINIA(LOC1)

C... ORYOUMAYCOPYITINTOCURRENTDATABASE

CALLCOPY(2,'ESTF',1,'TSTF')

.

.

C... YOUMAYGETANYARRAYFROM'FEMDB', IFYOUWISH

.

CALLDBCLOS(1,'KEEP')

STOP

END

D. Memory Paging Te
hnique

In dealing with a large problem, due to the shortage of internal storage, it is always required to use the

memory paging te
hnique. For example, a three{dimensional �nite element mesh of 10,000 nodes required

30,000 real numbers to store the nodal
oordinates; if you are using 8{byte real variables to store them, it

takes over 230 KB just for nodal
oordinates. In this
ase, if you divide it into ten pages (ten versions in

AMSF's word), 1,000 nodes per page, every time you keep one page in internal memory, then just 23 KB

in-
ore storage is required. In operations, manual
ontrol of internal and external memory swapping should

provide, the pro
ess is similar to the virtual memory system. However, dire
t use of the virtual memories

is not re
ommended. Sin
e virtual memories perform best when most a

ess are relatively
lose to previous

a

esses. This implies that transfers from external to internal storage are needed infrequently. Using the

manual method, we
ould
hoose an adequate page size whi
h is large enough to
over the nodes around a

group of elements to minimize the swappings. On the other hand, dire
t use of the virtual memory , though

easier to implement,
ould
ause ineÆ
ien
y problem if improper page sizes are used, whi
h depends on how

well the available virtual memory system is implemented.

13

Internal Data Stru
ture of AMSF

Database of AMSF is
omposed by a single �xed{length dire
t a

ess �le; both arrays and dire
tories

are stored there. When a user issues a DBOPEN statement, AMSF
reates a standard FORTRAN dire
t

a

ess �le, writes a
reation date/time stamp to the �rst re
ord, then set the se
ond re
ord, and so on, as

available spa
e for the user. Every time the user
reates an array using the DEFINE statement, AMSF

allo
ates enough
onse
utive in-
ore spa
e in the blank
ommon memory bank for the array, and also
reates

a dire
tory in the memory bank to store the attributes of the array. If the array has out-of-
ore versions (i.e.

NvMax>0), then besides the in-
ore spa
e is allo
ated, AMSF reserves suÆ
ient
onse
utive disk re
ords

for that array in whi
h the out-of-
ore versions
an be written or read ba
k in later operations. In
onsistent

in the array size and the disk �le re
ord length is not a problem, sin
e the dire
tory remembers the �rst

re
ord number and the o�set position where its out-of-
ore versions
ommen
e, so that the disk lo
ation of

individual versions of the array
an be
al
ulated and a

essed without diÆ
ulty. After the user
loses the

database using DBCLOS statement, the dire
tories in the main memory are appended to the end of the disk

database �le, whi
h may span to several re
ords. AMSF puts the re
ord number of dire
tory entry point in

the �rst re
ord before the �le is
losed. On
e the database �le is reopened, AMSF
ould learn the dire
tory

entry point from the �rst re
ord, and all the dire
tories are qui
kly brought ba
k to the internal memory,

and all arrays are ready for pro
essing again.

Sin
e the internal storage available for AMSF is a large integer array in the blank
ommon area. The

in-
ore arrays and their dire
tories are all stored there. During the operation of AMSF, the in-
ore arrays

are allo
ated from the �rst element of the large integer array IA, and grow downward. The user
ould use

LOCATE subroutine to �nd where a
ertain in-
ore array begins in the large integer array. On the other

hand, array attributes are stored in the dire
tory area whi
h are piled up from the bottom of the large

integer array. User
ould use LOOK fun
tion to �nd where the dire
tory of a
ertain array begins. As the

data grows large, the in-
ore arrays and the dire
tories will
ollide in the middle of the large integer array.

In su
h
ondition, the internal memory is said to be over
owed. In this situation, the user
an delete some

unused in-
ore arrays via DELETE or DELALL subroutine to free some storage for
ontinuous working.

For those arrays without out-of-
ore versions, DELETE means deletion of both in-
ore arrays as well as

asso
iated dire
tories; for those arrays with out-of-
ore versions, only in-
ore arrays are deleted, the user
an

use the GET statement to retrieve one of its out-of-
ore versions, and its in-
ore portion will be reallo
ated

to re
eive that version.

If the REMOVE subroutine is used to delete the out-of-
ore versions of an array, the in-
ore portion of

the array will be deleted �rst, then AMSF put a deletion mark in the dire
tory of the array instead of a
tual

delete it. Sin
e in high level language, su
h as FORTRAN, there is no way to delete few re
ords within a

dire
t a

ess �le. If the user does not like them o

upying some of your disk spa
e, a new database
an be

opened using DBCOPY subroutine to dupli
ate entire database to the new one. Those deleted versions are

automati
ally negle
ted.

The attributes of an array are stored in the dire
tory. Ea
h dire
tory entry IP o

upies 16 integer words

ontaining the following information,

IA(IP) : Nd, Database number

IA(IP+1) : First
hara
ter of the array name

IA(IP+2) : Se
ond
hara
ter of the array name

IA(IP+3) : Third
hara
ter of the array name

IA(IP+4) : Fourth
hara
ter of the array name

IA(IP+5) : Nt, data type

IA(IP+6) : Nr, number of rows

IA(IP+7) : N
, number of
olumns

IA(IP+8) : Ms, storage mode

IA(IP+9) : NvMax, number of out-of-
ore versions

IA(IP+10) : Nvw, Maximum version written

14

IA(IP+11) : Ire
, re
ord number where the out-of-
ore versions
ommen
e

IA(IP+12) : Io�, o�set position in Ire
 re
ord

IA(IP+13) : Lo
, the lo
ation of the �rst element in IA array

IA(IP+14) : Nsize, array size in integer words (per version)

IA(IP+15) : Deletion indi
ator of out-of-
ore versions.

Con
lusions

There are dozens of good algorithms and data stru
tures available for data management[11℄, but AMSF

was made a simple and pra
ti
al so that everyone
an understand it. This enable s
ientists and engineers

an pie
e together more
ompli
ated software tools that are tailored spe
i�
ally for their needs. The use of

AMSF should provide s
ienti�

ommunity with an e�e
tive management tool to rapidly develop or modify

quality programs at low
ost. However, all the software developers shall be aware that the tar pit of software

engineering will
ontinue to be sti
ky for a long time to
ome[12℄. Hope that AMSF will shorten it a little

bit for you.

Referen
es

1. P. J. Pahl. Data Management in Finite Element Analysis. Nonlinear Finite Element Analysis in Stru
-

tural Me
hani
s, 715{741, Springer{Verlag, Berlin (1981).

2. C. L. Bla
kburn, O. O. Storaasli, and R. E. Fulton. The Role and Appli
ation of Database Management

in Integrated Computer{Aided Design. J. Air
raft 20, No. 8 (Aug. 1983).

3. E. L. Wilson and M. I. Hoit. A Computer Adaptive Language for the Development of Stru
tural Analysis

Program. Comput. Stru
tures 19, No. 3, 321{338 (1984).

4. T. Sreekanta Murthy, Y-K. Shyy, and J. S. Arora. MIDAS: Management of Information for Design and

Analysis of Systems. Advan
es in Engineering Software 8, No. 3, 149{158 (1986).

5. B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Moler, Matrix Eigensystem

Routines { EISPACK Guide, 2nd Edn. Springer{Verlag, New York (1976).

6. International Mathemati
al and Statisti
al Libraries, IMSL In
., 2500 ParkWest Tower One, 2500 City-

West Boulevard, Houston, Texas.

7. J. J. Dongarra, C. B. Moler, J. R. Bun
h, and G. W. Stewart, LINPACK Users' Guide, SIAM, Philadel-

phia (1979).

8. System/360 S
ienti�
 Subroutine Pa
kage (SSP), version III, IBM Corp., Te
h. Publi
ations Dept.,

White Plains, New York (1968).

9. E. L. Wilson, K. J. Bathe, and W. P. Doherty. Dire
t Solution of Large Systems of Linear Equations.

Comput. Stru
tures 4, 363{372 (1974).

10. G. von Fu
hs, J. R. Roy, and E. S
hrem. Hypermatrix Solution of Large Sets of Symmetri
 Positive{

De�nite Linear Equations. Computer Methods in Applied Me
hani
s and Engineering 1, 197-216 (1972).

11. A. V. Aho, J. E. Hop
roft, and J. D. Ullman, Data Stru
tures and Algorithms, Addison{Wesley, Reading,

Mass. (1983).

12. F. P. Brooks, Jr., The Mythi
al Man{Month, Addison{Wesley, Reading, Mass. (1975).

15

Appendix A. Qui
k Referen
e of AMSF Subroutines

AMSF Database Open and Close Subroutines

a. Open database �le

CALL DBOPEN(Nd,'DBname',Status)

Nd: database number (Nd=1,2,3,...)

'DBname': database �le name (operating system dependent)

Status: 'New','Old', or 'Unknown'

b. Close database �le

CALL DBCLOS(Nd,Status)

Nd: database number (Nd=1,2,3,...)

Status: 'Keep', or 'Delete'

AMSF In
ore Array Management Subroutines

a. De�ne an array (in-
ore and out-of-
ore)

CALL DEFINE(Nd,'Name',NvMax,Nt,Nr,N
,Ms,Lo
)

Nd: database number

'Name': array name (not more than 4
hara
ters long)

NvMax: Maximum version numbers in disk, zero if only in-
ore demand

Nt: data type (0:integer, 1:real, 2:
omplex)

Nr: number of rows (greater than 0; row ve
tor Nr=1)

N
: number of
olumns (greater than 0;
olumn ve
tor N
=1)

Ms: storage mode (0:general, 1:symmetri
, 2:diagonal)

Lo
: �rst element lo
ation in IA array (returned); Lo
=-NvMax if out-of-
ore

b. Lo
ate in-
ore address of array 'Name'

CALL LOCATE(Nd,'Name',Nt,Nr,N
,Ms,Lo
)

Nd: database number

'Name': array name (not more than 4
hara
ters long)

Nt: data type (returned; 0:integer, 1:real, 2:
omplex)

Nr: number of rows (returned)

N
: number of
olumns (returned)

Ms: storage mode (returned; 0:general, 1:symmetri
, 2:diagonal)

Lo
: �rst element lo
ation in IA array (returned)

. Delete an in-
ore array 'Name' of database Nd

CALL DELETE(Nd,'Name')

Nd: database number

'Name': array name (not more than 4
hara
ters long)

d. Delete all in-
ore arrays of database Nd

CALL DELALL(Nd)

Nd: database number

e. Change array name from 'OldName' to 'NewName' in database Nd

CALL RENAME(Nd,'OldName','NewName')

Nd: database number

'OldName': Old array name

'NewName': New array name

f. Copy in-
ore arrays Nd1,'Name1' to Nd2,'Name2'

CALL COPY (Nd1,'Name1',Nd2,'Name2')

Nd1: Sour
e database number

'Name1': array name in Nd1 to be
opied from

Nd2: Destination database number

'Name2': array name in Nd2 to be
opied to

16

AMSF Out-of-
ore Array Management Subroutines

a. Save array 'Name' into version Nv of 'Name' in database Nd

CALL SAVE (Nd,'Name',Nv)

Nd: database number

'Name': array name (not more than 4
hara
ters long)

Nv: version number (1 � Nv � NvMax)

b. Get array 'Name' version Nv from database Nd

CALL GET (Nd,'Name',Nv,Lo
)

Nd: database number

'Name': array name (not more than 4
hara
ters long)

Nv: version number (1 � Nv � NvMax)

Lo
: �rst element lo
ation in IA array (returned)

. Store an in-
ore array AA to array 'Name' version Nv of database Nd

CALL STORE (Nd,'Name',Nv,AA)

Nd: database number

'Name': array name (not more than 4
hara
ters long)

Nv: version number (1 � Nv � NvMax)

AA: an in-
ore array

d. Copy an out-of-
ore array 'Name' version Nv of database Nd to the in-
ore array AA

CALL FETCH (Nd,'Name',Nv,AA)

Nd: database number

'Name': array name (not more than 4
hara
ters long)

Nv: version number (1 � Nv � NvMax)

AA: an in-
ore array

e. Find the dire
tory entry point of array 'Name'

Ip = LOOK(Nd,'Name')

Ip: address of dire
tory entry point

Nd: database number

'Name': array name (not more than 4
hara
ters long)

f. Qui
k disk store of array with dire
tory entry Ip

CALL QSTORE(Ip,Nv,Narray)

Ip: address of dire
tory entry point

Nv: version number (1 � Nv � NvMax)

Narray: an in-
ore array

g. Qui
k disk fet
h of array with dire
tory entry Ip

CALL QFETCH(Ip,Nv,Narray)

Ip: address of dire
tory entry point

Nv: version number (1 � Nv � NvMax)

Narray: an in-
ore array

h. Mark deletion of array 'Name' in database Nd

CALL REMOVE (Nd,'Name')

Nd: database number

'Name': array name (not more than 4
hara
ters long)

i. Copy out-of-
ore array Nd1,'Name1' to Nd2, 'Name2'

CALL MOVE(Nd1,'Name1',Nd2,'Name2')

Nd1: sour
e database number

'Name1': sour
e array name (not more than 4
hara
ters long)

Nd2: destination database number

'Name2': destination array name (not more than 4
hara
ters long)

j. Copy one version of out-of-
ore array Nd1,'Name1' to Nd2, 'Name2'

17

CALL MOVE1V(Nd1,'Name1',Nv1,Nd2,'Name2',Nv2)

Nd1: sour
e database number

'Name1': sour
e array name (not more than 4
hara
ters long)

Nv1: sour
e version number

Nd2: destination database number

'Name2': destination array name (not more than 4
hara
ters long)

Nv2: destination version number

k. Copy entire database Nd1 to Nd2 (out-of-
ore arrays only)

CALL DBCOPY(Nd1,Nd2)

Nd1: sour
e database number

Nd2: destination database number

AMSF Utilities

a. Print out dire
tory to logi
al unit Lun

CALL DIR(Lun)

Lun: logi
al unit number (�le, printer, or s
reen)

b. Sort array names in dire
tory

CALL DSORT

. Ask full array attributes of 'Name' in database Nd

CALL ATTRIB(Nd,'Name',NvMax,Nt,Nr,N
,Ms,Lo
,Nvw,Ire
,Io�,Nsize,Ndrop)

Nd: database number

'Name': array name

NvMax: Maximum versions allowed in disk (returned)

Nt: data type (returned, 0:integer, 1:real, 2:
omplex)

Nr: number of rows (returned, greater than 0)

N
: number of
olumns (returned, greater than 0)

Ms: storage mode (returned, 0:general, 1:symmetri
, 2:diagonal)

Lo
: �rst element lo
ation in IA array (returned)

NvW: Maximum version number in disk (returned)

Ire
, Io�: re
ord number and o�set of disk �le
ontaining the �rst element (returned)

Nsize: array size in integer words

Ndrop: out-of-
ore array deletion indi
ator (Ndrop6=0, removed)

d. Get values of used and unused memories

CALL MEMORY(Ndir,Nused,Nfree)

Ndir: in-
ore memory used by dire
tories (in integer words)

Nused: in-
ore memory used by arrays (in integer words)

Nfree: in-
ore memory available (in integer words)

(Ndir + Nused + Nfree = MAVAIL)

e. Turn o�/on in-
ore memory
he
k toggle

CALL MEMCHK(Mode)

Mode='a
tive' , AMS aborted if out-of-memory (default)

Mode='passive', turn o� memory
he
k toggle

AMSF Operational Module

a. Intera
tive matrix input routine

CALL MATINP('Name')

'Name': array name (not more than 4
hara
ters long)

b. Intera
tive matrix output routine

CALL MATOUT('Name')

'Name': array name (not more than 4
hara
ters long)

18

